Reversal of transmission and reflection based on acoustic metagratings with integer parity design

Phase gradient metagratings (PGMs) have provided unprecedented opportunities for wavefront manipulation. However, this approach suffers from fundamental limits on conversion efficiency; in some cases, higher order diffraction caused by the periodicity can be observed distinctly, while the working me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-05, Vol.10 (1), p.2326-2326, Article 2326
Hauptverfasser: Fu, Yangyang, Shen, Chen, Cao, Yanyan, Gao, Lei, Chen, Huanyang, Chan, C. T., Cummer, Steven A., Xu, Yadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phase gradient metagratings (PGMs) have provided unprecedented opportunities for wavefront manipulation. However, this approach suffers from fundamental limits on conversion efficiency; in some cases, higher order diffraction caused by the periodicity can be observed distinctly, while the working mechanism still is not fully understood, especially in refractive-type metagratings. Here we show, analytically and experimentally, a refractive-type metagrating which can enable anomalous reflection and refraction with almost unity efficiency over a wide incident range. A simple physical picture is presented to reveal the underlying diffraction mechanism. Interestingly, it is found that the anomalous transmission and reflection through higher order diffraction can be completely reversed by changing the integer parity of the PGM design, and such phenomenon is very robust. Two refractive acoustic metagratings are designed and fabricated based on this principle and the experimental results verify the theory. Phase gradient metagratings suffer from limits on conversion efficiency. Here, the authors show a refractive-type metagrating which can enable anomalous reflection and refraction with almost unity efficiency over a wide incident range and uncover how integer parity plays a role in higher order diffraction.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10377-9