Carbon Nanosheets Infused with Gold Nanoparticles as an Ultrasensitive Nose for Electrochemical Arsenic Sensing

Herein, we introduce an eco-friendly electrochemical sensor based on melamine-enriched nitrogen-doped carbon nanosheets decorated with gold nanoparticles (Au-CNSm) for arsenic sensing. An extremely facile, low-toxicity, biocompatible, and affordable hydrothermal technique was adopted for the synthes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-12, Vol.8 (50), p.48360-48369
Hauptverfasser: Agrawal, Omnarayan, Saxena, Kirti, Jain, Utkarsh, Chauhan, Nidhi, Sharma, Hitesh Kumar, Balal, Mohammad, Barman, Sudipta Roy, Das, Susmita, Mukherjee, Monalisa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we introduce an eco-friendly electrochemical sensor based on melamine-enriched nitrogen-doped carbon nanosheets decorated with gold nanoparticles (Au-CNSm) for arsenic sensing. An extremely facile, low-toxicity, biocompatible, and affordable hydrothermal technique was adopted for the synthesis of the Au-CNSm nanocomposite. The Au-CNSm-integrated sensing platform was optimized for electrode composition by cyclic voltammetry (CV). Owing to the synergistic effects of melamine-enriched carbon nanosheets (CNSm) and gold nanoparticles (AuNPs), the anodic peak current increased in the Au-CNSm-modified sensing electrode as compared to the CNSm-decorated platform. A wide linear range of 0.0001–100 μM and a low detection limit of 0.0001 μM were obtained. The visual signals can be measured at a very minute concentration of 0.0001 μM (0.1 ppb) on a screen-printed carbon electrode (SPCE) modified with Au-CNSm. Hence, this electrode system clearly outperformed the previously reported studies in terms of linear range, limit of detection (LOD), and electrocatalytic activity for arsenic sensing. Interestingly, the fabricated biosensor can be developed as a point-of-care device for real-time environmental monitoring for public safety. Henceforth, owing to exceptional attributes such as portability, selectivity, and sensitivity, this device offers great promise in modeling a revolutionary new class of electrochemical sensing platforms for an ultrasensitive and reliable detection strategy for arsenite (As­(III)).
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c07805