TuSeSy: An Intelligent Turntable Servo System for Tracking Aircraft and Parachutes Automatically

Tracking aircraft and parachutes plays a vital role in airdrop experiments. It is necessary to study a parachute’s open state and flight trajectory. More scholars are looking into how to efficiently and accurately obtain parachute deformation data and trajectory data. At present, the actual data col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-05, Vol.12 (10), p.5133
Hauptverfasser: Zhang, Zeyang, Pei, Zhongcai, Tang, Zhiyong, Gu, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tracking aircraft and parachutes plays a vital role in airdrop experiments. It is necessary to study a parachute’s open state and flight trajectory. More scholars are looking into how to efficiently and accurately obtain parachute deformation data and trajectory data. At present, the actual data collection primarily involves experimenters holding high-definition high-speed cameras to track and shoot parachutes to obtain the image sequences of the parachutes during the airdrop process. However, these methods cannot obtain the trajectories of the parachutes and they are susceptible to interference from human factors. In this paper, we designed TuSeSy, an intelligent turntable servo system that can track the aircraft and parachutes in airdrop tests automatically. Specifically, TuSeSy generates the control commands according to the differences between the actual taken images and the inferred images by tracking algorithms (so as to actually track the target). In addition, we propose an effective multi-target tracking switch algorithm based on the image frame difference and optical flow, to achieve real-time switching from the aircraft to the parachute in an airdrop test. To evaluate the performance of TuSeSy, we conducted extensive experiments; the experimental results show that TuSeSy not only solves the problem of wrong target tracking, but it also reduces computational overhead. Moreover, the multi-target tracking switch algorithm has higher computing efficiency and reliability compared to other tracking switch approaches, ensuring the practical applications of the turntable servo system.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12105133