Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality
Fixation identification is an essential task in the extraction of relevant information from gaze patterns; various algorithms are used in the identification process. However, the thresholds used in the algorithms greatly affect their sensitivity. Moreover, the application of these algorithm to eye-t...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (17), p.4956 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fixation identification is an essential task in the extraction of relevant information from gaze patterns; various algorithms are used in the identification process. However, the thresholds used in the algorithms greatly affect their sensitivity. Moreover, the application of these algorithm to eye-tracking technologies integrated into head-mounted displays, where the subject's head position is unrestricted, is still an open issue. Therefore, the adaptation of eye-tracking algorithms and their thresholds to immersive virtual reality frameworks needs to be validated. This study presents the development of a dispersion-threshold identification algorithm applied to data obtained from an eye-tracking system integrated into a head-mounted display. Rules-based criteria are proposed to calibrate the thresholds of the algorithm through different features, such as number of fixations and the percentage of points which belong to a fixation. The results show that distance-dispersion thresholds between 1-1.6° and time windows between 0.25-0.4 s are the acceptable range parameters, with 1° and 0.25 s being the optimum. The work presents a calibrated algorithm to be applied in future experiments with eye-tracking integrated into head-mounted displays and guidelines for calibrating fixation identification algorithms. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20174956 |