Effect of Cloud Mask on the Consistency of Snow Cover Products from MODIS and VIIRS
Snow cover has significant impacts on the global water cycle, ecosystem, and climate change. At present, satellite remote sensing is regarded as the most efficient approach to detect long-term and multiscale observations of snow cover extent. The Visible Infrared Imaging Radiometer Suite (VIIRS) sen...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-12, Vol.14 (23), p.6134 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Snow cover has significant impacts on the global water cycle, ecosystem, and climate change. At present, satellite remote sensing is regarded as the most efficient approach to detect long-term and multiscale observations of snow cover extent. The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard Joint Polar Satellite System (JPSS) satellites will replace the Moderate-Resolution Imaging Spectroradiometer (MODIS) to prolong data recording in the future. Therefore, it is a fundamental task to analyze and evaluate the consistency of the snow cover products retrieved from these two sensors. In this study, we performed comparisons and a consistency evaluation between the MODIS and VIIRS snow cover products in three major snow distribution regions in China: Northeast China (NE), Northwest China (NW) and the Qinghai–Tibet Plateau (QT). The results demonstrated that (1) the normalized difference snow index (NDSI)-derived snow cover products showed suitable consistency between VIIRS and MODIS under clear sky conditions, with a mean difference value of less than 5%; (2) the VIIRS snow cover product presented much more snow and fewer clouds than that of MODIS in the snow season due to the differences in cloud-masking algorithms; (3) cloud mask strongly affects the potential of snow cover observation, and presents seasonal pattern in the test regions; and (4) VIIRS is able to distinguish clouds from snow with greater accuracy. The comparisons indicated that the greater the difference in cloud cover, the poorer the agreement in snow cover. This evaluation implies that perfecting the cloud-masking algorithm of VIIRS to update the MODIS would be the best solution to achieve better consistency for long-term and high-quality snow cover products. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14236134 |