Dynamical Backaction Magnomechanics
Dynamical backaction resulting from radiation pressure forces in optomechanical systems has proven to be a versatile tool for manipulating mechanical vibrations. Notably, dynamical backaction has resulted in the cooling of a mechanical resonator to its ground state, driving phonon lasing, the genera...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2021-09, Vol.11 (3), p.031053, Article 031053 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dynamical backaction resulting from radiation pressure forces in optomechanical systems has proven to be a versatile tool for manipulating mechanical vibrations. Notably, dynamical backaction has resulted in the cooling of a mechanical resonator to its ground state, driving phonon lasing, the generation of entangled states, and observation of the optical-spring effect. In certain magnetic materials, mechanical vibrations can interact with magnetic excitations (magnons) via the magnetostrictive interaction, resulting in an analogous magnon-induced dynamical backaction. In this article, we directly observe the impact of magnon-induced dynamical backaction on a spherical magnetic sample’s mechanical vibrations. Moreover, dynamical backaction effects play a crucial role in many recent theoretical proposals; thus, our work provides the foundation for future experimental work pursuing many of these theoretical proposals. |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.11.031053 |