Prediction of Trained Panel Sensory Scores for Beef with Non-Invasive Raman Spectroscopy
The objective of this study was to investigate Raman spectroscopy as a tool for the prediction of sensory quality in beef. Raman spectra were collected from M. longissimus thoracis et lumborum (LTL) muscle on a thawed steak frozen 48 h post-mortem. Another steak was removed from the muscle and aged...
Gespeichert in:
Veröffentlicht in: | Chemosensors 2022-01, Vol.10 (1), p.6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to investigate Raman spectroscopy as a tool for the prediction of sensory quality in beef. Raman spectra were collected from M. longissimus thoracis et lumborum (LTL) muscle on a thawed steak frozen 48 h post-mortem. Another steak was removed from the muscle and aged for 14 days before being assessed for 12 sensory traits by a trained panel. The most accurate coefficients of determination of cross validation (R2CV) calibrated within the current study were for the trained sensory panel textural scores; particularly tenderness (0.46), chewiness (0.43), stringiness (0.35) and difficulty to swallow (0.33), with practical predictions also achieved for metallic flavour (0.52), fatty after-effect (0.44) and juiciness (0.36). In general, the application of mathematical spectral pre-treatments to Raman spectra improved the predictive accuracy of chemometric models developed. This study provides calibrations for valuable quality traits derived from a trained sensory panel in a non-destructive manner, using Raman spectra collected at a time-point compatible with meat management systems. |
---|---|
ISSN: | 2227-9040 2227-9040 |
DOI: | 10.3390/chemosensors10010006 |