Prediction of Trained Panel Sensory Scores for Beef with Non-Invasive Raman Spectroscopy

The objective of this study was to investigate Raman spectroscopy as a tool for the prediction of sensory quality in beef. Raman spectra were collected from M. longissimus thoracis et lumborum (LTL) muscle on a thawed steak frozen 48 h post-mortem. Another steak was removed from the muscle and aged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosensors 2022-01, Vol.10 (1), p.6
Hauptverfasser: Cafferky, Jamie, Cama-Moncunill, Raquel, Sweeney, Torres, Allen, Paul, Cromie, Andrew, Hamill, Ruth M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to investigate Raman spectroscopy as a tool for the prediction of sensory quality in beef. Raman spectra were collected from M. longissimus thoracis et lumborum (LTL) muscle on a thawed steak frozen 48 h post-mortem. Another steak was removed from the muscle and aged for 14 days before being assessed for 12 sensory traits by a trained panel. The most accurate coefficients of determination of cross validation (R2CV) calibrated within the current study were for the trained sensory panel textural scores; particularly tenderness (0.46), chewiness (0.43), stringiness (0.35) and difficulty to swallow (0.33), with practical predictions also achieved for metallic flavour (0.52), fatty after-effect (0.44) and juiciness (0.36). In general, the application of mathematical spectral pre-treatments to Raman spectra improved the predictive accuracy of chemometric models developed. This study provides calibrations for valuable quality traits derived from a trained sensory panel in a non-destructive manner, using Raman spectra collected at a time-point compatible with meat management systems.
ISSN:2227-9040
2227-9040
DOI:10.3390/chemosensors10010006