Forcing total outer connected monophonic number of a graph

For a connected graph $G = (V,E)$ of order at least two, a subset $T$ of a minimum total outer connected monophonic set $S$ of $G$ is a forcing total outer connected monophonic subsetfor $S$ if $S$ is the unique minimum total outer connected monophonic set containing $T$. A forcing total outer conne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiâ Saratovskogo universiteta. Novaâ seriâ. Seriâ Matematika. Mehanika. Informatika (Online) 2022-01, Vol.22 (3), p.278-286
Hauptverfasser: Ganesamoorthy, K., Lakshmi Priya, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a connected graph $G = (V,E)$ of order at least two, a subset $T$ of a minimum total outer connected monophonic set $S$ of $G$ is a forcing total outer connected monophonic subsetfor $S$ if $S$ is the unique minimum total outer connected monophonic set containing $T$. A forcing total outer connected monophonic subset for $S$ of minimum cardinality is a minimum forcing total outer connected monophonic subsetof $S$. The forcing total outer connected monophonic number$f_{tom}(S)$ in $G$ is the cardinality of a minimum forcing total outer connected monophonic subset of $S$. The forcing total outer connected monophonic numberof $G$ is $f_{tom}(G) = \min\{f_{tom}(S)\}$, where the minimum is taken over all minimum total outer connected monophonic sets $S$ in $G$. We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair $a,b$ of positive integers with $0 \leq a < b$ and $b \geq a+4$, there exists a connected graph $G$ such that $f_{tom}(G) = a$ and $cm_{to}(G) = b$, where $cm_{to}(G)$ is the total outer connected monophonic number of a graph.
ISSN:1816-9791
2541-9005
DOI:10.18500/1816-9791-2022-22-3-278-286