Forcing total outer connected monophonic number of a graph
For a connected graph $G = (V,E)$ of order at least two, a subset $T$ of a minimum total outer connected monophonic set $S$ of $G$ is a forcing total outer connected monophonic subsetfor $S$ if $S$ is the unique minimum total outer connected monophonic set containing $T$. A forcing total outer conne...
Gespeichert in:
Veröffentlicht in: | Izvestiâ Saratovskogo universiteta. Novaâ seriâ. Seriâ Matematika. Mehanika. Informatika (Online) 2022-01, Vol.22 (3), p.278-286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a connected graph $G = (V,E)$ of order at least two, a subset $T$ of a minimum total outer connected monophonic set $S$ of $G$ is a forcing total outer connected monophonic subsetfor $S$ if $S$ is the unique minimum total outer connected monophonic set containing $T$. A forcing total outer connected monophonic subset for $S$ of minimum cardinality is a minimum forcing total outer connected monophonic subsetof $S$. The forcing total outer connected monophonic number$f_{tom}(S)$ in $G$ is the cardinality of a minimum forcing total outer connected monophonic subset of $S$. The forcing total outer connected monophonic numberof $G$ is $f_{tom}(G) = \min\{f_{tom}(S)\}$, where the minimum is taken over all minimum total outer connected monophonic sets $S$ in $G$. We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair $a,b$ of positive integers with $0 \leq a < b$ and $b \geq a+4$, there exists a connected graph $G$ such that $f_{tom}(G) = a$ and $cm_{to}(G) = b$, where $cm_{to}(G)$ is the total outer connected monophonic number of a graph. |
---|---|
ISSN: | 1816-9791 2541-9005 |
DOI: | 10.18500/1816-9791-2022-22-3-278-286 |