Predicting response to enzalutamide and abiraterone in metastatic prostate cancer using whole-omics machine learning

Response to androgen receptor signaling inhibitors (ARSI) varies widely in metastatic castration resistant prostate cancer (mCRPC). To improve treatment guidance, biomarkers are needed. We use whole-genomics (WGS; n  = 155) with matching whole-transcriptomics (WTS; n  = 113) from biopsies of ARSI-tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-04, Vol.14 (1), p.1968-1968, Article 1968
Hauptverfasser: de Jong, Anouk C., Danyi, Alexandra, van Riet, Job, de Wit, Ronald, Sjöström, Martin, Feng, Felix, de Ridder, Jeroen, Lolkema, Martijn P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Response to androgen receptor signaling inhibitors (ARSI) varies widely in metastatic castration resistant prostate cancer (mCRPC). To improve treatment guidance, biomarkers are needed. We use whole-genomics (WGS; n  = 155) with matching whole-transcriptomics (WTS; n  = 113) from biopsies of ARSI-treated mCRPC patients for unbiased discovery of biomarkers and development of machine learning-based prediction models. Tumor mutational burden ( q  
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37647-x