Predicting response to enzalutamide and abiraterone in metastatic prostate cancer using whole-omics machine learning
Response to androgen receptor signaling inhibitors (ARSI) varies widely in metastatic castration resistant prostate cancer (mCRPC). To improve treatment guidance, biomarkers are needed. We use whole-genomics (WGS; n = 155) with matching whole-transcriptomics (WTS; n = 113) from biopsies of ARSI-tr...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-04, Vol.14 (1), p.1968-1968, Article 1968 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Response to androgen receptor signaling inhibitors (ARSI) varies widely in metastatic castration resistant prostate cancer (mCRPC). To improve treatment guidance, biomarkers are needed. We use whole-genomics (WGS;
n
= 155) with matching whole-transcriptomics (WTS;
n
= 113) from biopsies of ARSI-treated mCRPC patients for unbiased discovery of biomarkers and development of machine learning-based prediction models. Tumor mutational burden (
q
|
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-37647-x |