Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars

Crop model calibration and validation is vital for establishing their credibility and ability in simulating crop growth and yield. A split–split plot design field experiment was carried out with sowing dates (SD1, SD2 and SD3); maize cultivars (ZMS606, PHB30G19 and PHB30B50) and nitrogen fertilizer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nitrogen (Basel, Switzerland) Switzerland), 2021-12, Vol.2 (4), p.392-414
Hauptverfasser: Chisanga, Charles B., Phiri, Elijah, Chinene, Vernon R. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crop model calibration and validation is vital for establishing their credibility and ability in simulating crop growth and yield. A split–split plot design field experiment was carried out with sowing dates (SD1, SD2 and SD3); maize cultivars (ZMS606, PHB30G19 and PHB30B50) and nitrogen fertilizer rates (N1, N2 and N3) as the main plot, subplot and sub-subplot with three replicates, respectively. The experiment was carried out at Mount Makulu Central Research Station, Chilanga, Zambia in the 2016/2017 season. The study objective was to calibrate and validate APSIM-Maize and DSSAT-CERES-Maize models in simulating phenology, mLAI, soil water content, aboveground biomass and grain yield under rainfed and irrigated conditions. Days after planting to anthesis (APSIM-Maize, anthesis (DAP) RMSE = 1.91 days; DSSAT-CERES-Maize, anthesis (DAP) RMSE = 2.89 days) and maturity (APSIM-Maize, maturity (DAP) RMSE = 3.35 days; DSSAT-CERES-Maize, maturity (DAP) RMSE = 3.13 days) were adequately simulated, with RMSEn being
ISSN:2504-3129
2504-3129
DOI:10.3390/nitrogen2040027