HADE: Exploiting Human Action Recognition Through Fine-Tuned Deep Learning Methods

Human Action Recognition (HAR) is a vital area of computer vision with diverse applications in security, healthcare, and human-computer interaction. Addressing the challenges of HAR, particularly in dynamic and complex environments, is essential to advancing this field. The strength of the HADE fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.42769-42790
Hauptverfasser: Karim, Misha, Khalid, Shah, Aleryani, Aliya, Tairan, Nasser, Ali, Zafar, Ali, Farman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human Action Recognition (HAR) is a vital area of computer vision with diverse applications in security, healthcare, and human-computer interaction. Addressing the challenges of HAR, particularly in dynamic and complex environments, is essential to advancing this field. The strength of the HADE framework is its carefully curated dataset, which was primarily derived from smartphone camera footage. This dataset encompasses a wide range of human actions captured in various settings, providing a robust foundation for training our novel HAR models, HADE I and HADE II. These models have been specifically designed and optimized for parallel processing on GPUs, showing significant improvements in the efficiency of both training and inference processes. Through a comprehensive evaluation, the HADE framework demonstrated a remarkable improvement in HAR accuracy, achieving 83.57% accuracy on our custom dataset. This marks a considerable enhancement over existing methodologies and underscores the efficacy of the HADE approach in accurately interpreting complex human actions. The framework's potential applicability in healthcare in the domain of neurological patient care is particularly noteworthy, where it can aid in early detection and facilitate personalized treatment plans. Future research should focus on expanding the range of actions covered by HAR and exploring avenues for real-time processing. The introduction of the HADE framework not only makes a substantial contribution to the field of computer vision but also paves the way for its practical application across various sectors.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3378515