Discovering a change point and piecewise linear structure in a time series of organoid networks via the iso-mirror
Recent advancements have been made in the development of cell-based in-vitro neuronal networks, or organoids. In order to better understand the network structure of these organoids, a super-selective algorithm has been proposed for inferring the effective connectivity networks from multi-electrode a...
Gespeichert in:
Veröffentlicht in: | Applied Network Science 2023-12, Vol.8 (1), p.45-13, Article 45 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advancements have been made in the development of cell-based in-vitro neuronal networks, or organoids. In order to better understand the network structure of these organoids, a super-selective algorithm has been proposed for inferring the effective connectivity networks from multi-electrode array data. In this paper, we apply a novel statistical method called spectral mirror estimation to the time series of inferred effective connectivity organoid networks. This method produces a one-dimensional iso-mirror representation of the dynamics of the time series of the networks which exhibits a piecewise linear structure. A classical change point algorithm is then applied to this representation, which successfully detects a change point coinciding with the neuroscientifically significant time inhibitory neurons start appearing and the percentage of astrocytes increases dramatically. This finding demonstrates the potential utility of applying the iso-mirror dynamic structure discovery method to inferred effective connectivity time series of organoid networks. |
---|---|
ISSN: | 2364-8228 2364-8228 |
DOI: | 10.1007/s41109-023-00564-5 |