A Novel Two-Stage Heuristic for Solving Storage Space Allocation Problems in Rail–Water Intermodal Container Terminals

In the past, most researchers have paid attention to the storage space allocation problem in maritime container terminals, while few have studied this problem in rail–water intermodal container terminals. Therefore, this paper proposes a storage space allocation problem to look for a symmetry point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2019-10, Vol.11 (10), p.1229
Hauptverfasser: Chang, Yimei, Zhu, Xiaoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past, most researchers have paid attention to the storage space allocation problem in maritime container terminals, while few have studied this problem in rail–water intermodal container terminals. Therefore, this paper proposes a storage space allocation problem to look for a symmetry point between the efficiency and effectivity of rail–water intermodal container terminals and the unbalanced allocations and reallocation operations of inbound containers in the railway operation area, which are two interactive aspects. In this paper, a two-stage model on the storage space allocation problem is formulated, whose objective is to balance inbound container distribution and minimize overlapping amounts, considering both stacking principles, such as container departure time, weight and stacking height, and containers left in railway container yards from earlier planning periods. In Stage 1, a novel simulated annealing algorithm based on heuristics is introduced and a new heuristic algorithm based on a rolling horizon approach is developed in Stage 2. Computational experiments are implemented to verify that the model and algorithm we introduce can enhance the storage effect feasibly and effectively. Additionally, two comparison experiments are carried out: the results show that the approach in the paper performs better than the regular allocation approach and weight constraint is the most important influence on container storage.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym11101229