Volatile diterpene emission by two Mediterranean Cistaceae shrubs

Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-05, Vol.8 (1), p.6855-13, Article 6855
Hauptverfasser: Yáñez-Serrano, A. M., Fasbender, L., Kreuzwieser, J., Dubbert, D., Haberstroh, S., Lobo-do-Vale, R., Caldeira, M. C., Werner, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer , under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H . halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m −2 s −1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m −2 s −1 ) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m −2 s −1 ) emission rates. Comparable range and variability was found for C . ladanifer under natural conditions. Labelling with 13 C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-25056-w