Back-Stress and Its Evolution during Primary Creep in Particle Strengthened Nickel Superalloys
According to Eshelby's theory, inelastically inhomogeneous inclusions in a metallic matrix give rise to a distribution of internal stresses. In the case of particle strengthened materials, such as nickel base superalloys, the presence and evolution of this back-stress leads to various observabl...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2020-04, Vol.10 (4), p.306, Article 306 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to Eshelby's theory, inelastically inhomogeneous inclusions in a metallic matrix give rise to a distribution of internal stresses. In the case of particle strengthened materials, such as nickel base superalloys, the presence and evolution of this back-stress leads to various observable effects, such as primary creep, back-flow upon loading, and memory of prior deformation. This article presents the background of the concept of back-stress and how it applies to the scenario of creep. A derivation of an evolution equation for back-stress in the context of primary creep is also presented. The results from neutron diffraction with in-situ creep experiments on directionally solidified nickel superalloys are presented in order to demonstrate the validity of the proposed equation and the corollaries derived therefrom. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst10040306 |