The Detection System for a Danger State of a Collision between Construction Equipment and Workers Using Fixed CCTV on Construction Sites
According to data from the Ministry of Employment and Labor in Korea, a significant portion of fatal accidents on construction sites occur due to collisions between construction workers and equipment, with many of these collisions being attributed to worker negligence. This study introduces a method...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-10, Vol.23 (20), p.8371 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to data from the Ministry of Employment and Labor in Korea, a significant portion of fatal accidents on construction sites occur due to collisions between construction workers and equipment, with many of these collisions being attributed to worker negligence. This study introduces a method for accurately localizing construction equipment and workers on-site, delineating areas prone to collisions as ‘a danger area of a collision’, and defining collision risk states. Utilizing advanced deep learning models which specialize in object detection, video footage obtained from strategically placed closed-circuit television (CCTV) cameras across the construction site is analyzed. The positions of each detected object are determined using transformation or homography matrices representing the conversion relationship between a sufficiently flat reference plane and image coordinates. Additionally, ‘a danger area of a collision’ is proposed for evaluating equipment collision risk based on the moving equipment’s speed, and the validity of this area is verified. Through this, the paper presents a system designed to preemptively identify potential collision risks, particularly when workers are located within the ‘danger area of a collision’, thereby mitigating accident risks on construction sites. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23208371 |