Entropy generation optimization of EMHD mixed convective flow with higher order chemical reaction: Sensitivity analysis

This investigation deals with the sensitivity analysis of the unsteady, incompressible fluid flow past a vertical elongating surface using the Response Surface Methodology. The impact of Joule heating, viscous dissipation, non-uniform heat source, and higher-order chemical reaction are encountered u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Case studies in thermal engineering 2024-02, Vol.54, p.104079, Article 104079
Hauptverfasser: Gandhi, Rishu, Sharma, Bhupendra K., Kumar, Anup, Almohsen, Bandar, Fernandez-Gamiz, Unai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This investigation deals with the sensitivity analysis of the unsteady, incompressible fluid flow past a vertical elongating surface using the Response Surface Methodology. The impact of Joule heating, viscous dissipation, non-uniform heat source, and higher-order chemical reaction are encountered under the influence of external electric and magnetic fields. The governing equations are modeled by the boundary layer assumptions with slip conditions, which are changed to dimensionless form by incorporation of the transformation variables. The dimensionless equations are higher-order ordinary differential equations. These ordinary differential equations are numerically simulated by the application of iterative shooting technique with Runga Kutta 4th-order numerical method. Outcomes corresponding to the fluid velocity, temperature, and concentration profile are presented in the graphs, surface plots, and contours for different influential parameters like Eckert number, electric field parameter, Prandtl number, and chemical reaction parameter. It is observed that the Nusselt number escalates with an increment in the electric field parameter and Hartmann number. The entropy formation rate is greater along the higher Hartmann number values and lesser along the higher electric field parameter values. Findings of this attempt are helpful in heat storage systems, pharmaceuticals, biological engineering, medication delivery, safer cooling surgery, cooling reactors, biosensors, magnetic cell isolation, and military fields.
ISSN:2214-157X
2214-157X
DOI:10.1016/j.csite.2024.104079