Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion response
[Display omitted] Additive manufacturing of near β-type Ti-13Nb-13Zr alloys using the laser powder bed fusion process (LPBF) opens up new avenues to tailor the microstructure and subsequent macro-scale properties that aids in developing new generation patient-specific, load-bearing orthopedic implan...
Gespeichert in:
Veröffentlicht in: | Materials & design 2022-05, Vol.217, p.110618, Article 110618 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Additive manufacturing of near β-type Ti-13Nb-13Zr alloys using the laser powder bed fusion process (LPBF) opens up new avenues to tailor the microstructure and subsequent macro-scale properties that aids in developing new generation patient-specific, load-bearing orthopedic implants. In this work, we investigate a wide range of LPBF parameter space to optimize the volumetric energy density, surface characteristics and melt track widths to achieve a stable process and part density of greater than 99 %. Further, optimized sample states were achieved via thermal post-processing using standard capability aging, super-transus (900 °C) and sub-transus (660 °C) heat treatment strategies with varying quenching mediums (air, water and ice). The applied heat treatment strategies induce various fractions of α, martensite (α', α'') in combination with the β phase and strongly correlated with the observed enhanced mechanical properties and a relatively low elastic modulus. In summary, our work highlights a practical strategy for optimizing the mechanical and corrosion properties of a LPBF produced near β-type Ti-13Nb-13Zr alloy via careful evaluation of processing and post-processing steps and the interrelation to the corresponding microstructures. Corrosion studies revealed excellent corrosion resistances of the heat-treated LPBF samples comparable to wrought Ti-13Nb-13Zr alloys. |
---|---|
ISSN: | 0264-1275 1873-4197 |
DOI: | 10.1016/j.matdes.2022.110618 |