Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2016-06, Vol.6 (2), p.021035, Article 021035
Hauptverfasser: Nagaya, K., Motomura, K., Kukk, E., Fukuzawa, H., Wada, S., Tachibana, T., Ito, Y., Mondal, S., Sakai, T., Matsunami, K., Koga, R., Ohmura, S., Takahashi, Y., Kanno, M., Rudenko, A., Nicolas, C., Liu, X.-J., Zhang, Y., Chen, J., Anand, M., Jiang, Y. H., Kim, D.-E., Tono, K., Yabashi, M., Kono, H., Miron, C., Yao, M., Ueda, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil. This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. This validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.6.021035