Identification of Fault Lineaments and Earthquake Hazard Zoning Using Remote Sensing and GIS: A Case Study of Rumeshkan County, Lorestan Province
AbstractAs a natural hazard, earthquake has always caused destruction and loss of human life throughout history. Proper planning to prevent or reduce the destructive impact of earthquake hazard is of particular importance. In this study, to prevent and decrease the risk of this phenomenon, faults we...
Gespeichert in:
Veröffentlicht in: | Geography and environmental planning 2023-06, Vol.34 (2), p.1-16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | per |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AbstractAs a natural hazard, earthquake has always caused destruction and loss of human life throughout history. Proper planning to prevent or reduce the destructive impact of earthquake hazard is of particular importance. In this study, to prevent and decrease the risk of this phenomenon, faults were detected and earthquake risk zoning was done in Rumeshkan County in Lorestan Province. For this purpose, first, the lineaments in the region were detected by using 2013 satellite images from Landsat 8 OLI sensors (row 37 and pass 166) and applying Directional Filters in ENVI software, as well as Lineament Extraction in Geomatica software. Afterwards, by comparing the lines with the constructed band combinations, the Digital Elevation Model (DEM) and geological map of the study area were investigated, the faults were separated, and their map was prepared in the Geographic Information System (ArcGIS). In this study, by using expert judgment method and AHP-Fuzzy, the factors that affected the risk of earthquakes in Rumeshkan County, including distance from fault, slope, geomorphology, lithology, and distance from epicenters of past earthquakes were weighted and the seismic hazard map of the region was prepared. According to the obtained results, 31.8, 34.3, 10.3, 14.6, and 9.0% of the area were in very low, low, medium, high, and very high hazard classes, respectively. Examination of the earthquake hazard sensitivity map showed that the highest sensitivity to seismic hazard was in the eastern parts of the county and that the central parts had very low and low risks; thus, settlement of population in the latter areas is recommended.Keywords: earthquake, Rumeshkan, remote asensing, GIS, AHP-fuzzy IntroductionEarthquakes have always been among the most important natural hazards. Every year, a large number of people in the world are affected by the adverse effects of earthquake. To decrease human and economic losses, as well as their social consequences, it is necessary to gain an accurate knowledge of the risks of earthquakes in different places based on the current knowledge and the latest reliable technologies. Risk zoning is an important approach in the pre-crisis management process that greatly assists planners and managers to take measures to reduce earthquakes earthquake vulnerability. The main issues are the selection of vulnerability criteria and the way of combining them, as well as selecting an appropriate model that can best represent the rate of vulnera |
---|---|
ISSN: | 2008-5362 2252-0910 |
DOI: | 10.22108/gep.2022.132279.1484 |