Simulation of Hydrogen Isotopes Accumulation Processes in Materials in the Presence of Chemical Traps

The accumulation of hydrogen inside a solids occurs in traps of a different nature. The following things are known in addition to finding hydrogen in interstitial sites: dislocation mechanisms of hydrogen storage, micropores and microcracks, sorption on the free surface of microdefects, chemical tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Eurasian chemico-technological journal 2019-01, Vol.21 (1), p.25-28
Hauptverfasser: Kulsartov, T.V., Zaurbekova, Zh.A., Chikhray, Ye.V., Gabdullin, M.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accumulation of hydrogen inside a solids occurs in traps of a different nature. The following things are known in addition to finding hydrogen in interstitial sites: dislocation mechanisms of hydrogen storage, micropores and microcracks, sorption on the free surface of microdefects, chemical traps with the formation of hydrides and other compounds, both with matrix material and with impurities or components of alloys. It is established that each type of trap has its own binding energy of hydrogen, which can vary from 0.2 eV for hydrogen gas in microdefects to several eV for hydrogen chemically bound in traps. Measurements of the distribution of hydrogen concentration dissolved in a solid body over binding energies provide a clue as to the understanding of hydrogen impact on mechanical properties and to the development of technologies for controlling the materials properties during their production and operation. The paper presents the results of simulation experiments on hydrogen saturation of materials in the presence of chemical traps. The proposed model, based on the numerical solution of the diffusion equation in the presence of irreversible capture, made it possible to describe the absorption process and determine the activation energies of hydrogen interaction with the material.
ISSN:2522-4867
1562-3920
2522-4867
DOI:10.18321/ectj783