GFI-Net: Global Feature Interaction Network for Monocular Depth Estimation

Monocular depth estimation techniques are used to recover the distance from the target to the camera plane in an image scene. However, there are still several problems, such as insufficient estimation accuracy, the inaccurate localization of details, and depth discontinuity in planes parallel to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-02, Vol.25 (3), p.421
Hauptverfasser: Zhang, Cong, Xu, Ke, Ma, Yanxin, Wan, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monocular depth estimation techniques are used to recover the distance from the target to the camera plane in an image scene. However, there are still several problems, such as insufficient estimation accuracy, the inaccurate localization of details, and depth discontinuity in planes parallel to the camera plane. To solve these problems, we propose the Global Feature Interaction Network (GFI-Net), which aims to utilize geometric features, such as object locations and vanishing points, on a global scale. In order to capture the interactive information of the width, height, and channel of the feature graph and expand the global information in the network, we designed a global interactive attention mechanism. The global interactive attention mechanism reduces the loss of pixel information and improves the performance of depth estimation. Furthermore, the encoder uses the Transformer to reduce coding losses and improve the accuracy of depth estimation. Finally, a local-global feature fusion module is designed to improve the depth map's representation of detailed areas. The experimental results on the NYU-Depth-v2 dataset and the KITTI dataset showed that our model achieved state-of-the-art performance with full detail recovery and depth continuation on the same plane.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25030421