Formulation Optimization and Performance Prediction of Red Mud Particle Adsorbents Based on Neural Networks

Red mud (RM), a bauxite residue, contains hazardous radioactive wastes and alkaline material and poses severe surface water and groundwater contamination risks, necessitating recycling. Pretreated RM can be used to make adsorbents for water treatment. However, its performance is affected by many fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-02, Vol.29 (5), p.970
Hauptverfasser: Li, Longjiang, Wang, Yalan, Wang, Wenyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Red mud (RM), a bauxite residue, contains hazardous radioactive wastes and alkaline material and poses severe surface water and groundwater contamination risks, necessitating recycling. Pretreated RM can be used to make adsorbents for water treatment. However, its performance is affected by many factors, resulting in a nonlinear correlation and coupling relationship. This study aimed to identify the best formula for an RM adsorbent using a mathematical model that examines the relationship between 11 formulation types (e.g., pore-assisting agent, component modifier, and external binder) and 9 properties (e.g., specific surface area, wetting angle, and Zeta potential). This model was built using a back-propagation neural network (BP) based on single-factor experimental data and orthogonal experimental data. The model trained and predicted the established network structure to obtain the optimal adsorbent formula. The RM particle adsorbents had a pH of 10.16, specific surface area (BET) of 48.92 m ·g , pore volume of 2.10 cm ·g , compressive strength (ST) of 1.12 KPa, and 24 h immersion pulverization rate ( ) of 3.72%. In the removal of total phosphorus in flotation tailings backwater, it exhibited a good adsorption capacity (Q) and total phosphorous removal rate ( ) of 48.63 mg·g and 95.13%, respectively.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29050970