Independent Maternal and Fetal Genetic Effects on Midgestational Circulating Levels of Environmental Pollutants
Maternal exposure to environmental pollutants could affect fetal brain development and increase autism spectrum disorder (ASD) risk in conjunction with differential genetic susceptibility. Organohalogen congeners measured in maternal midpregnancy blood samples have recently shown significant, but ne...
Gespeichert in:
Veröffentlicht in: | G3 : genes - genomes - genetics 2017-04, Vol.7 (4), p.1287-1299 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maternal exposure to environmental pollutants could affect fetal brain development and increase autism spectrum disorder (ASD) risk in conjunction with differential genetic susceptibility. Organohalogen congeners measured in maternal midpregnancy blood samples have recently shown significant, but negative associations with offspring ASD outcome. We report the first large-scale maternal and fetal genetic study of the midpregnancy serum levels of a set of 21 organohalogens in a subset of 790 genotyped women and 764 children collected in California by the Early Markers for Autism (EMA) Project. Levels of PCB (polychlorinated biphenyl) and PBDE (polybrominated diphenyl ether) congeners showed high maternal and fetal estimated SNP-based heritability (
) accounting for 39-99% of the total variance. Genome-wide association analyses identified significant maternal loci for p,p'-DDE (
= 7.8 × 10
) in the
gene and for BDE-28 (
= 3.2 × 10
) near the
gene, both involved in xenobiotic and lipid metabolism. Fetal genetic loci contributed to the levels of BDE-100 (
= 4.6 × 10
) and PCB187 (
= 2.8 × 10
), near the potential metabolic genes
and
, previously implicated in neurodevelopment. Negative associations were observed for BDE-100, BDE153, and the sum of PBDEs with ASD, partly explained by genome-wide additive genetic effects that predicted PBDE levels. Our results support genetic control of midgestational biomarkers for environmental exposures by nonoverlapping maternal and fetal genetic determinants, suggesting that future studies of environmental risk factors should take genetic variation into consideration. The independent influence of fetal genetics supports previous hypotheses that fetal genotypes expressed in placenta can influence maternal physiology and the transplacental transfer of organohalogens. |
---|---|
ISSN: | 2160-1836 2160-1836 |
DOI: | 10.1534/g3.117.039784 |