Molecular modeling of S-RNases involved in almond self-incompatibility

Gametophytic self-incompatibility (GSI) is a mechanism in flowering plants, to prevent inbreeding and promote outcrossing. GSI is under the control of a specific locus, known as the S-locus, which contains at least two genes, the RNase and the SFB. Active S-RNases in the style are essential for reje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2012-01, Vol.3, p.139-139
Hauptverfasser: Fernández I Martí, Angel, Wirthensohn, Michelle, Alonso, José M, Socias I Company, Rafel, Hrmova, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gametophytic self-incompatibility (GSI) is a mechanism in flowering plants, to prevent inbreeding and promote outcrossing. GSI is under the control of a specific locus, known as the S-locus, which contains at least two genes, the RNase and the SFB. Active S-RNases in the style are essential for rejection of haploid pollen, when the pollen S-allele matches one of two S-alleles of the diploid pistil. However, the nature of their mutual interactions at genetic and biochemical levels remain unclear. Thus, detailed understanding of the protein structure involved in GSI may help in discovering how the proteins involved in GSI may function and how they fulfill their biological roles. To this end, 3D models of the SC (S(f)) and two SI (S(8) and S(23)) S-RNases of almond were constructed, using comparative modeling tools. The modeled structures consisted of mixed α and β folds, with six helices and six β-strands. However, the self-compatible (S(f)) RNase contained an additional extended loop between the conserved domains RC4 and C5, which may be involved in the manifestation of self-compatibility in almond.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2012.00139