Hybrid Indoor Human Localization System for Addressing the Issue of RSS Variation in Fingerprinting

Indoor localization is used in many applications like security, healthcare, location based services, and social networking. Fingerprinting-based methods are widely used for indoor localization. But received signal strength (RSS) variation due to device diversity and change of conditions in the local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed sensor networks 2015-01, Vol.2015 (3), p.831423
Hauptverfasser: Bitew, Mekuanint Agegnehu, Hsiao, Rong-Shue, Lin, Hsin-Piao, Lin, Ding-Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Indoor localization is used in many applications like security, healthcare, location based services, and social networking. Fingerprinting-based methods are widely used for indoor localization. But received signal strength (RSS) variation due to device diversity and change of conditions in the localization environment (e.g., distribution of furniture, people presence and movement, and opening and closing of doors) induce a significant localization error. To overcome this, we propose a hybrid indoor localization system using radio frequency (RF) and pyroelectric infrared (PIR) sensors. Our localization system has two stages. In the first stage, the zone of the target person is identified by PIR sensors. In the second stage, we apply K-nearest neighbor (K-NN) algorithm to the fingerprints within the zone identified and estimate position. Zone based processing of fingerprints will exclude deviated fingerprints because of RSS variation. We proposed two localization methods: Proposed_1 and Proposed_2 which use signal strength difference (SSD) and RSS, respectively. Simulation results show that the 0.8-meter accuracy of Proposed_1 achieves 84% and Proposed_2 achieves 65%, while traditional fingerprinting and SSD are 46% and 28%, respectively.
ISSN:1550-1329
1550-1477
1550-1477
DOI:10.1155/2015/831423