A Multi-Objective Task Reallocating Method in Complex Product Design Process Considering Design Changes

In the highly dynamic design environments, task allocation is subject to considerable design changes. The task reallocating to cope with various unexpected design changes becomes an increasingly important issue in the complex product design (CPD). In this paper, we propose a task reallocating model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.168226-168235
Hauptverfasser: Wang, Yinhe, Wei, Meng, Su, Jiafu, Hu, Hongyuan, Wang, Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the highly dynamic design environments, task allocation is subject to considerable design changes. The task reallocating to cope with various unexpected design changes becomes an increasingly important issue in the complex product design (CPD). In this paper, we propose a task reallocating model based on an adaptive multi-objective genetic algorithm and Tabu search (AMOGATS) method to study the dynamic task allocating procedure considering design changes, which integrates the advantages of adaptive genetic algorithm and Tabu search algorithm. Three objectives, i.e. completion time, robustness and stability, are considered simultaneously to measure the task allocation performance. A real example is employed to test and evaluate the performance of proposed method. The computational results imply that the proposed AMOGATS performs better than the heuristic algorithms available in the literature, which has more advantages on the convergence rate and running efficiency than the other algorithms, along with a better solution. This work provides a useful decision support to carry out the task reallocating with high levels of flexibility and efficiency during the process of CPD.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2954204