Accelerating Flux Calculations Using Sparse Sampling

The ongoing miniaturization in electronics poses various challenges in the designing of modern devices and also in the development and optimization of the corresponding fabrication processes. Computer simulations offer a cost- and time-saving possibility to investigate and optimize these fabrication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2018-10, Vol.9 (11), p.550
Hauptverfasser: Gnam, Lukas, Manstetten, Paul, Hössinger, Andreas, Selberherr, Siegfried, Weinbub, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing miniaturization in electronics poses various challenges in the designing of modern devices and also in the development and optimization of the corresponding fabrication processes. Computer simulations offer a cost- and time-saving possibility to investigate and optimize these fabrication processes. However, modern device designs require complex three-dimensional shapes, which significantly increases the computational complexity. For instance, in high-resolution topography simulations of etching and deposition, the evaluation of the particle flux on the substrate surface has to be re-evaluated in each timestep. This re-evaluation dominates the overall runtime of a simulation. To overcome this bottleneck, we introduce a method to enhance the performance of the re-evaluation step by calculating the particle flux only on a subset of the surface elements. This subset is selected using an advanced multi-material iterative partitioning scheme, taking local flux differences as well as geometrical variations into account. We show the applicability of our approach using an etching simulation of a dielectric layer embedded in a multi-material stack. We obtain speedups ranging from 1.8 to 8.0, with surface deviations being below two grid cells (0.6⁻3% of the size of the etched feature) for all tested configurations, both underlining the feasibility of our approach.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi9110550