Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury

Abstract Matrix metalloproteinases (MMPs) are a large family of proteolytic enzymes involved in inflammation, wound healing and other pathological processes after neurological disorders. MMP-2 promotes functional recovery after spinal cord injury (SCI) by regulating the formation of a glial scar. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of disease 2009-10, Vol.36 (1), p.200-212
Hauptverfasser: Veeravalli, Krishna Kumar, Dasari, Venkata Ramesh, Tsung, Andrew J, Dinh, Dzung H, Gujrati, Meena, Fassett, Dan, Rao, Jasti S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Matrix metalloproteinases (MMPs) are a large family of proteolytic enzymes involved in inflammation, wound healing and other pathological processes after neurological disorders. MMP-2 promotes functional recovery after spinal cord injury (SCI) by regulating the formation of a glial scar. In the present study, we aimed to investigate the expression and/or activity of several MMPs, after SCI and human umbilical cord blood mesenchymal stem cell (hUCB) treatment in rats with a special emphasis on MMP-2. Treatment with hUCB after SCI altered the expression of several MMPs in rats. MMP-2 is upregulated after hUCB treatment in spinal cord injured rats and in spinal neurons injured either with staurosporine or hydrogen peroxide. Further, hUCB induced upregulation of MMP-2 reduced formation of the glial scar at the site of injury along with reduced immunoreactivity to chondroitin sulfate proteoglycans. Blockade of MMP-2 activity in hUCB cocultured injured spinal neurons reduced the protection offered by hUCB which indicated the involvement of MMP-2 in the neuroprotection offered by hUCB. Based on these results, we conclude that hUCB treatment after SCI upregulates MMP-2 levels and reduces the formation of the glial scar thereby creating an environment suitable for endogenous repair mechanisms.
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2009.07.012