Cotton Yield Estimate Using Sentinel-2 Data and an Ecosystem Model over the Southern US
High-resolution data with nearly global coverage from Sentinel-2 mission open a new era for crop growth monitoring and yield estimation from remote sensing. The objective of this study is to demonstrate the potential of using Sentinel-2 biophysical data combined with an ecosystem modeling approach f...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2019, Vol.11 (17), p.2000 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-resolution data with nearly global coverage from Sentinel-2 mission open a new era for crop growth monitoring and yield estimation from remote sensing. The objective of this study is to demonstrate the potential of using Sentinel-2 biophysical data combined with an ecosystem modeling approach for estimation of cotton yield in the southern United States (US). The Boreal Ecosystems Productivity Simulator (BEPS) ecosystem model was used to simulate the cotton gross primary production (GPP) over three Sentinel-2 tiles located in Mississippi, Georgia, and Texas in 2017. Leaf area index (LAI) derived from Sentinel-2 measurements and hourly meteorological data from Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) reanalysis were used to drive the ecosystem model. The simulated GPP values at 20-m grid spacing were aggregated to the county level (17 counties in total) and compared to the cotton lint yield estimates at the county level which are available from National Agricultural Statistics Service in the United States Department of Agriculture. The results of the comparison show that the BEPS-simulated cotton GPP explains 85% of variation in cotton yield. Our study suggests that the integration of Sentinel-2 LAI time series into the ecosystem model results in reliable estimates of cotton yield. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11172000 |