On the solvability of the first boundary value problem for the loaded equation of heat conduction

In this paper we consider the first boundary value problem for the loaded equation of heat conduction in a quarter plane. The loaded term is the trace of the fractional derivative of order ν, 0 ≤ ν ≤ 1 with respect to the time variable on the line x = t. It is shown that when 0 ≤ ν ≤ 1 and ∀λ ∈C, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Қарағанды университетінің хабаршысы. Математика сериясы 2018-03, Vol.89 (1), p.33-41
Hauptverfasser: Jenaliyev, M.T., Iskakov, S.A., Ramazanov, M.I., Tuleutaeva, Zh.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the first boundary value problem for the loaded equation of heat conduction in a quarter plane. The loaded term is the trace of the fractional derivative of order ν, 0 ≤ ν ≤ 1 with respect to the time variable on the line x = t. It is shown that when 0 ≤ ν ≤ 1 and ∀λ ∈C, then the load is a weak perturbation, that is, the studied problem has a unique solution in the class of bounded functions.
ISSN:2518-7929
2518-7929
2663-5011
DOI:10.31489/2018M1/33-41