A Step towards Sustainable Concrete with Substitution of Plastic Waste in Concrete: Overview on Mechanical, Durability and Microstructure Analysis

Plastics have become an essential part of our daily lives, and global plastic production has increased dramatically in the past 50 years. This has significantly increased the amount of plastic garbage produced. Researchers have recently been interested in using trash and recyclable plastics in concr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2022-07, Vol.12 (7), p.944
Hauptverfasser: Ahmad, Jawad, Majdi, Ali, Babeker Elhag, Ahmed, Deifalla, Ahmed Farouk, Soomro, Mahfooz, Isleem, Haytham F., Qaidi, Shaker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plastics have become an essential part of our daily lives, and global plastic production has increased dramatically in the past 50 years. This has significantly increased the amount of plastic garbage produced. Researchers have recently been interested in using trash and recyclable plastics in concrete as an ecologically acceptable building material. A large number of publications have been published that describe the behavior of concrete, containing waste and recovered plastic com ponents. However, information is scattered, and no one knows how plastic trash behaves as concrete materials. This research examines the use of plastic waste (PW) as aggregate or fiber in cement mortar and concrete manufacturing. The article reviewed the three most significant features of concrete: fresh properties, mechanical strength, and durability. PW and cement connections were also studied using microstructure analysis (scan electronic microscopy). The results showed that PW, as a fiber, enhanced mechanical performance, but PW, as a coarse aggregate, impaired concrete performance owing to poor bonding. The assessment also identified research needs in order to enhance the performance of PW-based concrete in the future.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst12070944