Development of an ammonia-biodiesel dual fuel combustion engine's injection strategy map using response surface optimization and artificial neural network prediction

The study intends to calibrate the compression ignition (CI) engine split injection parameters as efficiently. The goal of the study is to find the best split injection parameters for a dual-fuel engine that runs on 40% ammonia and 60% biodiesel at 80% load and a constant speed of 1500 rpm with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-01, Vol.14 (1), p.543-543, Article 543
Hauptverfasser: Elumalai, R., Ravi, K., Elumalai, P. V., Sreenivasa Reddy, M., Prakash, E., Sekar, Prabhakar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study intends to calibrate the compression ignition (CI) engine split injection parameters as efficiently. The goal of the study is to find the best split injection parameters for a dual-fuel engine that runs on 40% ammonia and 60% biodiesel at 80% load and a constant speed of 1500 rpm with the CRDi system. To optimize and forecast split injection settings, the RSM and an ANN model are created. Based on the experimental findings, the RSM optimization research recommends a per-injection timing of 54 °CA bTDC, a main injection angle of 19 °CA bTDC, and a pilot mass of 42%. As a result, in comparison to the unoptimized map, the split injection optimized calibration map increases BTE by 12.33% and decreases BSEC by 6.60%, and the optimized map reduces HC, CO, smoke, and EGT emissions by 15.68%, 21.40%, 18.82, and 17.24%, while increasing NOx emissions by 15.62%. RSM optimization with the most desirable level was selected for map development, and three trials were carried out to predict the calibrated map using ANN. According to the findings, the ANN predicted all responses with R > 0.99, demonstrating the real-time reproducibility of engine variables in contrast to the RSM responses. The experimental validation of the predicted data has an error range of 1.03–2.86%, which is acceptable.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-51023-1