Polygenic risk prediction based on singular value decomposition with applications to alcohol use disorder

The polygenic risk score (PRS) shows promise as a potentially effective approach to summarize genetic risk for complex diseases such as alcohol use disorder that is influenced by a combination of multiple variants, each of which has a very small effect. Yet, conventional PRS methods tend to over-adj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2022-01, Vol.23 (1), p.28-15, Article 28
Hauptverfasser: Yang, James J, Luo, Xi, Trucco, Elisa M, Buu, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The polygenic risk score (PRS) shows promise as a potentially effective approach to summarize genetic risk for complex diseases such as alcohol use disorder that is influenced by a combination of multiple variants, each of which has a very small effect. Yet, conventional PRS methods tend to over-adjust confounding factors in the discovery sample and thus have low power to predict the phenotype in the target sample. This study aims to address this important methodological issue. This study proposed a new method to construct PRS by (1) approximating the polygenic model using a few principal components selected based on eigen-correlation in the discovery data; and (2) conducting principal component projection on the target data. Secondary data analysis was conducted on two large scale databases: the Study of Addiction: Genetics and Environment (SAGE; discovery data) and the National Longitudinal Study of Adolescent to Adult Health (Add Health; target data) to compare performance of the conventional and proposed methods. The results show that the proposed method has higher prediction power and can handle participants from different ancestry backgrounds. We also provide practical recommendations for setting the linkage disequilibrium (LD) and p value thresholds.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-022-04566-5