Superior Low-Temperature Power and Cycle Performances of Na-Ion Battery over Li-Ion Battery

The most simple and clear advantage of Na-ion batteries (NIBs) over Li-ion batteries (LIBs) is the natural abundance of Na, which allows inexpensive production of NIBs for large-scale applications. However, although strenuous research efforts have been devoted to NIBs particularly since 2010, certai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2017-03, Vol.2 (3), p.864-872
Hauptverfasser: Mukai, Kazuhiko, Inoue, Takao, Kato, Yuichi, Shirai, Soichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The most simple and clear advantage of Na-ion batteries (NIBs) over Li-ion batteries (LIBs) is the natural abundance of Na, which allows inexpensive production of NIBs for large-scale applications. However, although strenuous research efforts have been devoted to NIBs particularly since 2010, certain other advantages of NIBs have been largely overlooked, for example, their low-temperature power and cycle performances. Herein, we present a comparative study of spirally wound full-cells consisting of Li0.1Na0.7Co0.5Mn0.5O2 (or Li0.8Co0.5Mn0.5O2) and hard carbon and report that the power of NIB at −30 °C is ∼21% higher than that of LIB. Moreover, the capacity retention in cycle testing at 0 °C is ∼53% for NIB but only ∼29% for LIB. Raman spectroscopy and density functional theory calculations revealed that the superior performance of NIB is due to the relatively weak interaction between Na+ ions and aprotic polar solvents.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.6b00551