SN 2020bio: A Double-peaked, H-poor Type IIb Supernova with Evidence of Circumstellar Interaction

We present photometric and spectroscopic observations of SN 2020bio, a double-peaked Type IIb supernova (SN) discovered within a day of explosion, primarily obtained by Las Cumbres Observatory and Swift. SN 2020bio displays a rapid and long-lasting initial decline throughout the first week of its li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-09, Vol.954 (1), p.35
Hauptverfasser: Pellegrino, C., Hiramatsu, D., Arcavi, I., Howell, D. A., Bostroem, K. A., Brown, P. J., Burke, J., Elias-Rosa, N., Itagaki, K., Kaneda, H., McCully, C., Modjaz, M., Gonzalez, E. Padilla, Pritchard, T. A., Yesmin, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present photometric and spectroscopic observations of SN 2020bio, a double-peaked Type IIb supernova (SN) discovered within a day of explosion, primarily obtained by Las Cumbres Observatory and Swift. SN 2020bio displays a rapid and long-lasting initial decline throughout the first week of its light curve, similarly to other well-studied Type IIb SNe. This early-time emission is thought to originate from the cooling of the extended outer hydrogen-rich (H-rich) envelope of the progenitor star that is shock heated by the SN explosion. We compare SN 2020bio to a sample of other double-peaked Type IIb SNe in order to investigate its progenitor properties. Analytical model fits to the early-time emission give progenitor radius (≈100–1500 R ⊙ ) and H-rich envelope mass (≈0.01–0.5 M ⊙ ) estimates that are consistent with other Type IIb SNe. However, SN 2020bio displays several peculiarities, including (1) weak H spectral features indicating a greater amount of mass loss than other Type IIb progenitors; (2) an underluminous secondary light-curve peak that implies a small amount of synthesized 56 Ni ( M Ni ≈0.02 M ⊙ ); and (3) low-luminosity nebular [O i ] and interaction-powered nebular features. These observations are more consistent with a lower-mass progenitor ( M ZAMS ≈ 12 M ⊙ ) that was stripped of most of its H-rich envelope before exploding. This study adds to the growing diversity in the observed properties of Type IIb SNe and their progenitors.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ace595