Treating late-onset Tay Sachs disease: Brain delivery with a dual trojan horse protein
Tay-Sachs (TS) disease is a neurodegenerative disease resulting from mutations in the gene encoding the α-subunit (HEXA) of lysosomal β-hexosaminidase A (HexA). We report that (1) recombinant HEXA alone increased HexA activity and decreased GM2 content in human TS glial cells and peripheral mononucl...
Gespeichert in:
Veröffentlicht in: | Molecular therapy. Methods & clinical development 2024-09, Vol.32 (3), p.101300, Article 101300 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tay-Sachs (TS) disease is a neurodegenerative disease resulting from mutations in the gene encoding the α-subunit (HEXA) of lysosomal β-hexosaminidase A (HexA). We report that (1) recombinant HEXA alone increased HexA activity and decreased GM2 content in human TS glial cells and peripheral mononuclear blood cells; 2) a recombinant chimeric protein composed of HEXA linked to two blood-brain barrier (BBB) entry elements, a transferrin receptor binding sequence and granulocyte-colony stimulating factor, associates with HEXB in vitro; reaches human cultured TS cells lysosomes and mouse brain cells, especially neurons, in vivo; lowers GM2 in cultured human TS cells; lowers whole brain GM2 concentration by approximately 40% within 6 weeks, when injected intravenously (IV) to adult TS-mutant mice mimicking the slow course of late-onset TS; and increases forelimbs grip strength. Hence, a chimeric protein equipped with dual BBB entry elements can transport a large protein such as HEXA to the brain, decrease the accumulation of GM2, and improve muscle strength, thereby providing potential treatment for late-onset TS.
[Display omitted]
Stern and colleagues generated a recombinant protein composed of HEXA linked to two BBB entry elements, a transferrin receptor binding sequence and G-CSF. Injected IV to a slowly progressive TS mouse model, this protein (1) reached the brain, (2) lowered brain GM2, and (3) increased forelimb strength. |
---|---|
ISSN: | 2329-0501 2329-0501 |
DOI: | 10.1016/j.omtm.2024.101300 |