Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis

Neutrophils are crucial mediators of host defense that are recruited to the central nervous system (CNS) in large numbers during acute bacterial meningitis caused by Streptococcus pneumoniae . Neutrophils release neutrophil extracellular traps (NETs) during infections to trap and kill bacteria. Inta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-04, Vol.10 (1), p.1667-1667, Article 1667
Hauptverfasser: Mohanty, Tirthankar, Fisher, Jane, Bakochi, Anahita, Neumann, Ariane, Cardoso, José Francisco Pereira, Karlsson, Christofer A. Q., Pavan, Chiara, Lundgaard, Iben, Nilson, Bo, Reinstrup, Peter, Bonnevier, Johan, Cederberg, David, Malmström, Johan, Bentzer, Peter, Linder, Adam
Format: Artikel
Sprache:eng
Schlagworte:
DNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutrophils are crucial mediators of host defense that are recruited to the central nervous system (CNS) in large numbers during acute bacterial meningitis caused by Streptococcus pneumoniae . Neutrophils release neutrophil extracellular traps (NETs) during infections to trap and kill bacteria. Intact NETs are fibrous structures composed of decondensed DNA and neutrophil-derived antimicrobial proteins. Here we show NETs in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis, and their absence in other forms of meningitis with neutrophil influx into the CSF caused by viruses, Borrelia and subarachnoid hemorrhage. In a rat model of meningitis, a clinical strain of pneumococci induced NET formation in the CSF. Disrupting NETs using DNase I significantly reduces bacterial load, demonstrating that NETs contribute to pneumococcal meningitis pathogenesis in vivo. We conclude that NETs in the CNS reduce bacterial clearance and degrading NETs using DNase I may have significant therapeutic implications. Neutrophils play critical roles in the host response to bacteria, including the production neutrophil extracellular traps (NET). Here the authors show that NET formation in the context of pneumococcal meningitis impairs bacterial clearance and targeting NET formation in this context could be a potential therapeutic option.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09040-0