Theory of the field-revealed Kitaev spin liquid

Elementary excitations in entangled states such as quantum spin liquids may exhibit exotic statistics different from those obeyed by fundamental bosons and fermions. Non-Abelian anyons exist in a Kitaev spin liquid—the ground state of an exactly solvable model. A smoking-gun signature of these excit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-06, Vol.10 (1), p.2470-2470, Article 2470
Hauptverfasser: Gordon, Jacob S., Catuneanu, Andrei, Sørensen, Erik S., Kee, Hae-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elementary excitations in entangled states such as quantum spin liquids may exhibit exotic statistics different from those obeyed by fundamental bosons and fermions. Non-Abelian anyons exist in a Kitaev spin liquid—the ground state of an exactly solvable model. A smoking-gun signature of these excitations, namely a half-integer quantized thermal Hall conductivity, was recently reported in α -RuCl 3 . While fascinating, a microscopic theory for this phenomenon remains elusive because the pure Kitaev model cannot display this effect in an intermediate magnetic field. Here we present a microscopic theory of the Kitaev spin liquid emerging between the low- and high-field states. Essential to this result is an antiferromagnetic off-diagonal symmetric interaction which allows the Kitaev spin liquid to protrude from the ferromagnetic Kitaev limit under a magnetic field. This generic model displays a strong field anisotropy, and we predict a wide spin liquid regime when the field is perpendicular to the honeycomb plane. α-RuCl 3 is a candidate material for studying Kitaev physics but a microscopic theory consistent with experiments has not yet been established. Here the authors present a theory with an intermediate-field spin liquid phase that can explain recent results indicating anyonic behaviour.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10405-8