Autonomous Installation of Electrical Spacers on Power Lines Using Magnetic Localization and Special End Effector

The combined effects of environmental factors such as high winds and melting ice can cause transmission line conductors to vibrate at high amplitudes, resulting in damaged pole structures, cracked insulating strands, and short circuits. The manual installation of electrical spacers between the two p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machines (Basel) 2023-04, Vol.11 (5), p.510
Hauptverfasser: Zorić, Filip, Flegarić, Stjepan, Vasiljević, Goran, Bogdan, Stjepan, Kovačić, Zdenko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The combined effects of environmental factors such as high winds and melting ice can cause transmission line conductors to vibrate at high amplitudes, resulting in damaged pole structures, cracked insulating strands, and short circuits. The manual installation of electrical spacers between the two power line conductors is currently the only way to prevent this, but due to the high-voltage environment, this operation is extremely dangerous for a human worker. As a solution to automate this operation, the autonomous installation of electrical spacers using a robotic manipulator is proposed. For this purpose, a design of a special end effector for the robotic installation of electrical spacers is proposed. The end effector prototype was produced and tested under laboratory conditions and then used for the autonomous installation of spacers on power lines. Its localization with respect to the power lines is based on measurements of the magnetic field generated by the alternating currents flowing through the power lines. To verify the feasibility of the proposed solution under laboratory conditions, the proposed end effector equipped with magnetometers was developed and mounted on a 6-axis Schunk LWA 4p robotic arm. The implemented autonomous installation sequence was successfully verified using a robot and a laboratory mock-up of power lines.
ISSN:2075-1702
2075-1702
DOI:10.3390/machines11050510