High-Performance and Water Resistant PVA-Based Films Modified by Air Plasma Treatment

Plasma treatment is considered a straightforward, cost-effective, and environmental-friendly technique for surface modification of film materials. In this study, air plasma treatment was applied for performance improvement of pure PVA, cellulose nanocrystal (CNC)/PVA, and CNC/oxalic acid (OA)/PVA fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2022-02, Vol.12 (3), p.249
Hauptverfasser: Rao, Xin, Zhou, Qi, Wen, Qin, Ou, Zhiqiang, Fu, Lingying, Gong, Yue, Du, Xueyu, Huo, Chunqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasma treatment is considered a straightforward, cost-effective, and environmental-friendly technique for surface modification of film materials. In this study, air plasma treatment was applied for performance improvement of pure PVA, cellulose nanocrystal (CNC)/PVA, and CNC/oxalic acid (OA)/PVA films. Compared with the original performance of pure PVA, the mechanical properties and water resistance of air plasma treated films were greatly improved. Among them, the CNC/OA/PVA film treated by three minutes of air plasma irradiation exhibits the most remarkable performance in mechanical properties (tensile strength: 132.7 MPa; Young's modulus: 5379.9 MPa) and water resistance (degree of swelling: 47.5%; solubility: 6.0%). By means of various modern characterization methods, the wettability, surface chemical structure, surface roughness, and thermal stability of different films before and after air plasma treatment were further revealed. Based on the results obtained, the air plasma treatment only changed the surface chemical structure, surface roughness, and hydrophobicity, while keeping the inner structure of films intact.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12030249