Unsupervised Change Point Detection and Trend Prediction for Financial Time-Series Using a New CUSUM-Based Approach

The aim of this research is to propose a binary segmentation algorithm to detect the change points in financial time-series based on the Iterative Cumulative Sum of Squares (ICSS). The proposed algorithm, entitled KW-ICSS, utilizes the non-parametric Kruskal-Wallis test in cross-validation procedure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.34690-34705
Hauptverfasser: Kim, Kyungwon, Park, Ji Hwan, Lee, Minhyuk, Song, Jae Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this research is to propose a binary segmentation algorithm to detect the change points in financial time-series based on the Iterative Cumulative Sum of Squares (ICSS). The proposed algorithm, entitled KW-ICSS, utilizes the non-parametric Kruskal-Wallis test in cross-validation procedures. In this regard, KW-ICSS can quickly detect the change points in non-normally distributed time-series with a small number of observations after the change points than the state-of-the-art ICSS algorithm, entitled AIT-ICSS. For the simulated financial time-series whose true location of the change point is known, KW-ICSS detects the change points with the average true positive rate of 81% for the different number of change points, whereas AIT-ICSS only exhibits 72.57%. Also, KW-ICSS's mean absolute deviation between the true and detected change points is less than that of AIT-ICSS for different significance levels. The experiment also finds that the significance level, the model parameter, should be set to less than 10%. For the real-world financial time-series whose true location of change points is unknown, KW-ICSS's robust detection of change points is observed from fewer detected change points and longer intervals between them. Furthermore, KW-ICSS's trend prediction for the short-term future performs with an average of 92.47% accuracy, whereas AIT-ICSS shows 90.69%. Therefore, we claim that KW-ICSS successfully improves AIT-ICSS.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3162399