Comparative testis proteome of cattleyak from different developmental stages
Cattleyak (hybrid of cattle and yak) exhibit higher capability in adaptability and production than cattle and yak, while the infertility of F1 males greatly restricts the effective utilization of this hybrid and little progress has been made on investigating the mechanisms of the cattleyak infertili...
Gespeichert in:
Veröffentlicht in: | Animal (Cambridge, England) England), 2017-01, Vol.11 (1), p.101-111 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cattleyak (hybrid of cattle and yak) exhibit higher capability in adaptability and production than cattle and yak, while the infertility of F1 males greatly restricts the effective utilization of this hybrid and little progress has been made on investigating the mechanisms of the cattleyak infertility. Cattleyak individuals at three development stages (10, 12 and 14-month old) were sampled in this work and the isobaric tag for relative and absolute quantification method was employed to identify differences between their testicular proteomes. The proteomic analysis identified 318 proteins differentially expressed with significance at 12-month stage and 327 at 14-month compared with 10-month stage, respectively. Compared with the testicular proteome from 10-month cattleyak, the gene ontology (GO) annotations of the differentially expressed proteins at 12 months did not indicate significant differences from those at 14 months, which confirmed the histological observation that germ cell reduction was more obvious and spermatogenic arrest may become more serious in 12-month-old cattleyak. On the other hand, 56 differentially expressed proteins were coexpressed at 12 and 14-month stage compared with 10-month stage, in which 32 proteins were upregulated and 24 downregulated. GO analysis revealed that most of the differently expressed proteins were involved in the molecular function of catalytic activity, transporter activity, oxidoreductase activity and protein binding. Further analysis indicated that the differently expressed proteins including testis-expressed protein 101 precursor, RNA-binding motif protein, X chromosome, putative RNA-binding protein 3, heparin-binding proteins, tudor domain-containing protein 1, glutathione S-transferases (GSTA2, GSTP1), heat shock-related 70 kDa protein 2, estradiol 17-β-dehydrogenase11, 2,4-dienoyl-CoA reductase and peroxiredoxin-2 were possibly associated with testis development and spermatogenesis, which could be selected as candidate proteins in future study to examine the mechanisms of cattleyak infertility. |
---|---|
ISSN: | 1751-7311 1751-732X |
DOI: | 10.1017/S1751731116001191 |