Molecular level insights on the pulsed electrochemical CO2 reduction

Electrochemical CO 2 reduction reaction (CO 2 RR) occurring at the electrode/electrolyte interface is sensitive to both the potential and concentration polarization. Compared to static electrolysis at a fixed potential, pulsed electrolysis with alternating anodic and cathodic potentials is an intrig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15 (1), p.9781-12, Article 9781
Hauptverfasser: Ye, Ke, Jiang, Tian-Wen, Jung, Hyun Dong, Shen, Peng, Jang, So Min, Weng, Zhe, Back, Seoin, Cai, Wen-Bin, Jiang, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical CO 2 reduction reaction (CO 2 RR) occurring at the electrode/electrolyte interface is sensitive to both the potential and concentration polarization. Compared to static electrolysis at a fixed potential, pulsed electrolysis with alternating anodic and cathodic potentials is an intriguing approach that not only reconstructs the surface structure, but also regulates the local pH and mass transport from the electrolyte side in the immediate vicinity of the cathode. Herein, via a combined online mass spectrometry investigation with sub-second temporal resolution and 1-dimensional diffusion profile simulations, we reveal that heightened surface CO 2 concentration promotes CO 2 RR over H 2 evolution for both polycrystalline Ag and Cu electrodes after anodic pulses. Moreover, mild oxidative pulses generate a roughened surface topology with under-coordinated Ag or Cu sites, delivering the best CO 2 -to-CO and CO 2 -to-C 2+ performance, respectively. Surface-enhanced infrared absorption spectroscopy elucidates the potential dependence of *CO and *OCHO species on Ag as well as the gradually improved *CO consumption rate over under-coordinated Cu after oxidative pulses, directly correlating apparent CO 2 RR selectivity with dynamic interfacial chemistry at the molecular level. How pulsed electrolysis impacts the electrochemical CO2 reduction reaction remains unclear. Here, authors present a molecular-level picture on the complex interactions between cathode surfaces, adsorbates, and local reaction environment to elucidate the promotional effect of pulsed electrolysis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-54122-3