New HSV-1 Anti-Viral 1'-Homocarbocyclic Nucleoside Analogs with an Optically Active Substituted Bicyclo[2.2.1]Heptane Fragment as a Glycoside Moiety

New 1'-homocarbanucleoside analogs with an optically active substituted bicyclo[2.2.1]heptane skeleton as sugar moiety were synthesized. The pyrimidine analogs with uracil, 5-fluorouracil, thymine and cytosine and key intermediate with 6-chloropurine ( ) as nucleobases were synthesized by a sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2019-07, Vol.24 (13), p.2446
Hauptverfasser: Tănase, Constantin I, Drăghici, Constantin, Hanganu, Anamaria, Pintilie, Lucia, Maganu, Maria, Volobueva, Alexandrina, Sinegubova, Ekaterina, Zarubaev, Vladimir V, Neyts, Johan, Jochmans, Dirk, Slita, Alexander V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New 1'-homocarbanucleoside analogs with an optically active substituted bicyclo[2.2.1]heptane skeleton as sugar moiety were synthesized. The pyrimidine analogs with uracil, 5-fluorouracil, thymine and cytosine and key intermediate with 6-chloropurine ( ) as nucleobases were synthesized by a selective Mitsunobu reaction on the primary hydroxymethyl group in the presence of 5-endo-hydroxyl group. Adenine and 6-substituted adenine homonucleosides were obtained by the substitution of the 6-chlorine atom of the key intermediate with ammonia and selected amines, and 6-methoxy- and 6-ethoxy substituted purine homonucleosides by reaction with the corresponding alkoxides. No derivatives appeared active against entero, yellow fever, chikungunya, and adeno type 1viruses. Two compounds ( and ) had lower IC (15 ± 2 and 21 ± 4 µM) and compound had an identical value of IC (28 ± 4 µM) to that of acyclovir, suggesting that the bicyclo[2.2.1]heptane skeleton could be further studied to find a candidate for sugar moiety of the nucleosides.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24132446