Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data

We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine 2021-12, Vol.13 (1), p.187-187, Article 187
Hauptverfasser: Fustero-Torre, Coral, Jiménez-Santos, María José, García-Martín, Santiago, Carretero-Puche, Carlos, García-Jimeno, Luis, Ivanchuk, Vadym, Di Domenico, Tomás, Gómez-López, Gonzalo, Al-Shahrour, Fátima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell .
ISSN:1756-994X
1756-994X
DOI:10.1186/s13073-021-01001-x