Permutation Pattern matching in (213, 231)-avoiding permutations

Given permutations σ of size k and π of size n with k < n, the permutation pattern matching problem is to decide whether σ occurs in π as an order-isomorphic subsequence. We give a linear-time algorithm in case both π and σ avoid the two size-3 permutations 213 and 231. For the special case where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2017-03, Vol.18 no. 2, Permutation... (Permutation Patterns), p.14.1-22
Hauptverfasser: Neou, Both, Rizzi, Romeo, Vialette, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given permutations σ of size k and π of size n with k < n, the permutation pattern matching problem is to decide whether σ occurs in π as an order-isomorphic subsequence. We give a linear-time algorithm in case both π and σ avoid the two size-3 permutations 213 and 231. For the special case where only σ avoids 213 and 231, we present a O(max(kn 2 , n 2 log log n)-time algorithm. We extend our research to bivincular patterns that avoid 213 and 231 and present a O(kn 4)-time algorithm. Finally we look at the related problem of the longest subsequence which avoids 213 and 231.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.1329