Investigation of the Segregation of Radiocesium from Contaminated Aqueous Waste Using AMP-PAN Extraction Chromatography

Removing the hazardous and unstable radioactive isotopes has been considered an arduous task, though they are in minimal concentrations. Cesium-137 (137Cs+) is a primary fission product produced by nuclear processes. Even at low concentrations, such radioactive material is a menacing source of conta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-09, Vol.16 (18), p.6544
Hauptverfasser: Abbas, Taisir Khudhair, Abdulghafoor, Thaeerh Tariq, Aziz, Ali Hassan, Al-Saadi, Saad, Nafae, Takrid Munam, Rashid, Khalid Turki, Alsalhy, Qusay F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Removing the hazardous and unstable radioactive isotopes has been considered an arduous task, though they are in minimal concentrations. Cesium-137 (137Cs+) is a primary fission product produced by nuclear processes. Even at low concentrations, such radioactive material is a menacing source of contaminants for the environment. The current study aims to separate 137Cs+ from a real contaminated aqueous solution via an ion exchange mechanism using ammonium molybdophosphate–polyacrylonitrile (AMP-PAN) resin loaded in an extraction chromatographic column that possesses considerable selectivity toward cesium ion (Cs+) due to the specific ion exchange between 137Cs+ and NH4+. Additionally, the proposed interaction mechanism between 137Cs+ with APM-PAN resin has been illustrated in this study. The results disclosed that the optimum efficient removal of 137Cs+ (91.188%) was obtained by the AMP-PAN resin using 2 g·L−1, while the distribution adsorption coefficient (129.359 mL·g−1) was at pH 6. The isothermal adsorption process was testified through the Langmuir and Freundlich models. The estimated maximum adsorption capacity reached 140.81 ± 21.3 mg·g−1 for the Freundlich isotherm adsorption model. Finally, AMP-PAN resin could eliminate 137Cs+ from water effectively through adsorption.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16186544