Lossless Contrast Enhancement of Color Images with Reversible Data Hiding

Recently, lossless contrast enhancement (CE) has been proposed so that a contrast-changed image can be converted to its original version by maintaining information entropy in it. As most of the lossless CE methods are proposed for grayscale images, artifacts are probably introduced after directly ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2019-09, Vol.21 (9), p.910
Hauptverfasser: Wu, Hao-Tian, Wu, Yue, Guan, Zhihao, Cheung, Yiu-ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, lossless contrast enhancement (CE) has been proposed so that a contrast-changed image can be converted to its original version by maintaining information entropy in it. As most of the lossless CE methods are proposed for grayscale images, artifacts are probably introduced after directly applying them to color images. For instance, color distortions may be caused after CE is separately conducted in each channel of the RGB (red, green, and blue) model. To cope with this issue, a new scheme is proposed based on the HSV (hue, saturation, and value) color model. Specifically, both hue and saturation components are kept unchanged while only the value component is modified. More precisely, the ratios between the RGB components are maintained while a reversible data hiding method is applied to the value component to achieve CE effects. The experimental results clearly show CE effects obtained with the proposed scheme, while the original color images can be perfectly recovered. Several metrics including image entropy were adopted to measure the changes made in CE procedure, while the performances were compared with those of one existing scheme. The evaluation results demonstrate that better image quality and increased information entropy can be simultaneously achieved with our proposed scheme.
ISSN:1099-4300
1099-4300
DOI:10.3390/e21090910