Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years
Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prognostic accuracy for use in clinical practice. The objective was to evaluate the a...
Gespeichert in:
Veröffentlicht in: | Breast cancer research : BCR 2022-12, Vol.24 (1), p.93-93, Article 93 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prognostic accuracy for use in clinical practice. The objective was to evaluate the ability of a digital artificial intelligence (AI) assay (PDxBr) to enrich BC grading and improve risk categorization for predicting recurrence.
In our population-based longitudinal clinical development and validation study, we enrolled 2075 patients from Mount Sinai Hospital with infiltrating ductal carcinoma of the breast. With 3:1 balanced training and validation cohorts, patients were retrospectively followed for a median of 6 years. The main outcome was to validate an automated BC phenotyping system combined with clinical features to produce a binomial risk score predicting BC recurrence at diagnosis.
The PDxBr training model (n = 1559 patients) had a C-index of 0.78 (95% CI, 0.76-0.81) versus clinical 0.71 (95% CI, 0.67-0.74) and image feature models 0.72 (95% CI, 0.70-0.74). A risk score of 58 (scale 0-100) stratified patients as low or high risk, hazard ratio (HR) 5.5 (95% CI 4.19-7.2, p |
---|---|
ISSN: | 1465-542X 1465-5411 1465-542X |
DOI: | 10.1186/s13058-022-01592-2 |